Biosynthesis of unnatural glycolipids possessing diyne moiety in the acyl chain in the green sulfur photosynthetic bacterium Chlorobaculum tepidum grown by supplementation of 10,12-heptadecadiynic acid

نویسندگان

  • Yoshitaka Saga
  • Nozomi Yoshida
  • Shota Yamada
  • Tadashi Mizoguchi
  • Hitoshi Tamiaki
چکیده

Unnatural glycolipids possessing the diyne moiety in their acyl groups were successfully biosynthesized in the green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum by cultivation with supplementation of 10,12-heptadecadiynic acid. Monogalactosyldiacylglycerol (MGDG) and rhamnosylgalactosyldiacylglycerol (RGDG) esterified with one 10,12-heptadecadiynic acid were primarily formed in the cells, and small amounts of glycolipids esterified with the two unnatural fatty acids can also be detected. The relative ratio of these unnatural glycolipids occupied in the total glycolipids was estimated to be 49% based on HPLC analysis using a evaporative light scattering detector. These results indicate that the acyl groups in glycolipids, which play important roles in the formation of extramembranous antenna complexes called chlorosomes, can be modified in vivo by cultivation of green sulfur photosynthetic bacteria with exogenous synthetic fatty acids. Visible absorption and circular dichroism spectra of Cba. tepidum containing the unnatural glycolipids demonstrated the formation of chlorosomes, indicating that the unnatural glycolipids in this study did not interfere with the biogenesis of chlorosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ high-resolution structure of the baseplate antenna complex in Chlorobaculum tepidum

Photosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the pro...

متن کامل

Specific Gene bciD for C7-Methyl Oxidation in Bacteriochlorophyll e Biosynthesis of Brown-Colored Green Sulfur Bacteria

The gene named bciD, which encodes the enzyme involved in C7-formylation in bacteriochlorophyll e biosynthesis, was found and investigated by insertional inactivation in the brown-colored green sulfur bacterium Chlorobaculum limnaeum (previously called Chlorobium phaeobacteroides). The bciD mutant cells were green in color, and accumulated bacteriochlorophyll c homologs bearing the 7-methyl gro...

متن کامل

Sulfite Oxidation in Chlorobaculum Tepidum

The green sulfur bacterium Chlorobaculum tepidum is proposed to oxidize sulfide and elemental sulfur via sulfite as an obligate intermediate. The sulfite pool is predicted to be contained in the cytoplasm and be oxidized by the concerted action of ApsBA, which directly oxidizes sulfite, and QmoABC, which transfers electrons from ApsBA to the quinone pool. Like other green sulfur bacteria, C. te...

متن کامل

Gene Expression System in Green Sulfur Bacteria by Conjugative Plasmid Transfer

Gene transfer and expression systems in green sulfur bacteria were established by bacterial conjugation with Escherichia coli. Conjugative plasmid transfer from E. coli S17-1 to a thermophilic green sulfur bacterium, Chlorobaculum tepidum (formerly Chlorobium tepidum) WT2321, was executed with RSF1010-derivative broad-host-range plasmids, named pDSK5191 and pDSK5192, that confer erythromycin an...

متن کامل

Structural Analysis of the Homodimeric Reaction Center Complex from the Photosynthetic Green Sulfur Bacterium Chlorobaculum tepidum

The reaction center (RC) complex of the green sulfur bacterium Chlorobaculum tepidum is composed of the Fenna-Matthews-Olson antenna protein (FMO) and the reaction center core (RCC) complex. The RCC complex has four subunits: PscA, PscB, PscC, and PscD. We studied the FMO/RCC complex by chemically cross-linking the purified sample followed by biochemical and spectroscopic analysis. Blue-native ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017